Drilling integrity services

Geomechanical analysis that reduces nonproductive time and increases drilling efficiency

Applications

Drilling challenges require measurements coupled with predictive, geomechanical modeling to address operational issues such as wellbore instability, stuck pipe, and drilling losses. These issues cause nonproductive time (NPT), costing operators millions every year.

To fulfill energy demands, operators must undertake adverse drilling operations such as high-angle drainhole drilling to increase the reservoir contact drilling in HPHT environments. Wellbore stability profile changes a lot with the deviation and azimuth. Drilling in overpressure intervals increases the risk of catastrophic events like blowouts.

Drilling challenges include

- \rightarrow wellbore instability that causes NPT
- → casing point decisions with optimized mud weight for minimizing drilling losses
- \rightarrow safer drilling in high-risk HPHT environments
- ightarrow wellbore stability event mitigation for trajectory design
- → drilling parameters with changing deviation and azimuth and for layered shales with bedding plane failure
- \rightarrow fluid sensitivity to shales.

A geomechanical analysis that incorporates drill planning offers an established alternative to identify and mitigate potential drilling hazards. As a result, a geomechanical analysis minimizes NPT.

How it improves performance

- → Interacts with leftover mud in channels to reduce fluid mobility and limit channel permeability
- → Saves time and reduces cost with optimized drilling parameters
- → Increases efficiency for directional drilling by optimizing safer trajectories across different tectonic stress regimes
- → Optimizes mud chemistry for interactions with shale for stability
- → Predicts optimal mud weight for weak layered shales that have bedding plane failure
- \rightarrow Minimizes losses for depleted reservoirs
- → Improves readout port when rock strength and stress information are used as input for bit selection
- → Mitigates geological risks through predictive geomechanical models calibrated with offset drilling events
- \rightarrow Constructs a calibrated geomechanical earth model
- → Provides detailed wellbore stability analysis
- → Produces a trajectory sensitivity analysis

Wellbore stability showing varying drilling trajectories.

How it works

Geomechanical analysis incorporates the processing results of borehole images, acoustics data, and pressure tests. A 1D mechanical earth model is constructed to determine different rock mechanical strength properties, (anisotropic) elastic properties, and in situ stresses. The estimated stress is further calibrated using either stress testing or inverted stress magnitudes from radial profiles.

Wellbore stability analysis is done using the calibrated mechanical earth model. As drilling starts on the planned well, new data and calibration information can be acquired that further improves the original prediction and reduces model uncertainty. The ability to estimate accurate pore pressure and fracture gradient is critical. Safer drilling mud-weight window and casing placement depths are predicted along with a synthetic borehole failure image. Conducting a trajectory sensitivity analysis with model inputs ensures a safer trajectory for successful directional drilling.

Additionally, drilling fluid optimization is conducted to evaluate the potential time-dependent shale chemical stability and wellbore stability mechanisms. Mineralogical composition, pore size distribution, porosity, and pore water composition of shales are investigated in detail along with drilling reports that provide important behavioral shale characteristics. This information enables the insight and mitigation of potential drilling problems.

Drilling integrity services

			Elastic Properties	Rock Mechanical Properties	Pressures	Mud-Weight Window	Sheer Failure (0 degree – North)	
						Breakdown	High Angle Echelon 1.00 0.00 Failure Image-High Angle Echelon 0 Safe Safe Safe Safe Safe Safe Safe Safe	5 5
				Compressive	0 psi 20,000	Losses	0.00 1.00	
				Strength 0 psi 20.000	Overburden Stress 0 psi 20.000	Kick	Failure Image-Shallow Knockout 0 360	Bit Size
	Machanical	Borehole Azimuth	Poisson's Ratio	Tensile Strength	Max. Horizontal Stress	Shear Failure Min.	Wide Breakout	Caliper 2
	Stratigraphy	Borehole Deviation	Young's Modulus	Friction Angle	Min. Horizontal Stress	Mud Weight	Failure Image-Wide Breakout	Caliper 1
10,000		0 degrees 90	0 million psi 30	0 degrees 60	0 psi 20,000	8 ppg 1	8 0 360	0 6 in 16
			See and the second seco					
10,025			52	5	~ ~			
10,050			Munu					
-10.075					Maria			
10,100			And Market	2	- The second sec			
10,125			A Martin					-
-10,150								_
-10,175			- And					
10,200			The second secon					
10,225				E E	n star			

Mechanical earth model showing wellbore stability analysis for single trajectory.

Inputs

- \rightarrow Conventional openhole logs (gamma ray, density, and porosity)
- → Lithology analysis results
- \rightarrow Acoustics anisotropy, radial profiling results, and transverse isotropy properties
- \rightarrow Wellbore images for failure analysis
- → Well mechanical diagram and trajectory
- ightarrow Mud-weight profiles and mud logging reports
- → Stratigraphic column and formation tops
- \rightarrow Rock strength and elastic properties (unconfined compressive strength, Young's modus of elasticity, and Poisson's ratio) laboratory core test results
- → Shale-fluid interactions in laboratory core test results
- \rightarrow Well test and pressure buildup interpretations
- → Daily drilling reports
- → Structural maps

Azimuth (Circular Angle) Deviation (0-Center, 90°-Circumference) Schmidt - Pole - Upper Hemisphere 290 280

Breakdown vs. Orientation at 10,096 ft

Breakout mud weight vs. orientation.

Plane of weakness failure analysis with rock strength measurements at various angles to the bedding planes.

Takeaways

- → Calibrated geomechanical earth model consisting of rock mechanical strength and anisotropic elastic properties
- $\rightarrow\,$ Present data stress states: magnitude and orientation with continuous formation pressure
- → Available data integration from cores, caliper, acoustics, petrophysics, wellbore images, pressure, and stress testing
- → Stable mud-weight window with mud-weight and casing policy recommendations
- $\rightarrow\,$ Wellbore pressure profile limits for kick, breakouts and collapse, losses, and breakdown
- \rightarrow Trajectory sensitivity plots at each formation
- → Postwellbore stability review of drilling events
- → Plane of weakness failure analysis
- → DrillMAP[™] drilling engineering and operations plan plot for the planned well

Learn more

- Kumar, R., et al.: "Wellbore Stability and Hole Cleaning Management for Successful Well Design Optimization in Deep Tight Gas Fields," SPE/IADC Middle East Drilling Technology Conference and Exhibition, Abu Dhabi, UAE (January 2018) SPE-189357-MS https://doi.org/10.2118/189357-MS
- Roy, S., et al.: "Integrating Wireline Measurements to Provide Geomechanical Solutions: A Case Study for Optimizing Drilling by Improving Wellbore Stability in a Complex and Tectonically Active Region," IPTC, Bangkok, Thailand (November 2016) IPTC-18908-MS https://doi.org/10.2118/202933-MS
- Xi, G., et al.: "Geomechanics Characterization of Nahr Umr and Laffan Shales through Anisotropic Geomechanics and Shale Stability Analysis for Drilling Optimization," ADIPEC, Abu Dhabi, UAE (November 2020) SPE-202933-MS https://doi.org/10.2118/202933-MS

slb.com/SonicScanner